[Contribution from the Department of Chemical Engineering of the Massachusetts Institute of Technology]

Vapor-Adsorbate Equilibrium. III. The Effect of Temperature on the Binary Systems Ethylene-Propane, Ethylene-Propylene over Silica Gel

By W. K. LEWIS, E. R. GILLILAND, B. CHERTOW AND D. BAREIS

Vapor-adsorbate equilibria for gaseous mixtures of ethylene-propane and ethylene-propylene have been determined using silica gel as an adsorbent at barometric pressure and at 0, 25 and 40° . In addition to disclosing the effect of temperature over a narrow range, these systems permit corroborative deductions^{1,2} to be made as to the influence of a double bond on adsorption with silica gel. Here it will be noted that a low molecular weight olefin is in competition for the silica gel surface with either a higher molecular weight paraffin or olefin. In the light of the results of the previous work reported^{1,2} it is to be expected that the ethylene would be relatively less volatile in the propane system than in the propylene system.

Substantially, the same attack in the collection of data was employed as in the prior work,^{1,2} *i. e.*, adsorption-desorption isotherms were determined for each gas at each temperature level, equilibrium concentrations in the two phases were approached from both directions, mixture desorptions were carried out for material balance checks.

Fig. 1.—Adsorption isotherms of ethylene on silica gel at 0, 25 and 40°: $\triangle \bigcirc \square$ adsorption; $\bigtriangledown \blacksquare \blacksquare$ desorption.

(1) W. K. Lewis, et al., THIS JOURNAL, 72, 1153 (1950).

The propane employed contained 0.05% olefin, (see ref. 1) the propylene was 97.0% olefin (necessitating an isotherm determination as described in ref. (2)) and the ethylene was 99.5% pure. Refrigeration grade silica gel, 14/20 mesh was supplied by the Davison Chemical Co. of Baltimore.¹

⁽²⁾ W. K. Lewis, et al., ibid., 72, 1157 (1950).

March, 1950 Systems Ethylene-Propane, Ethylene-Propylene on Silica Gel

n

TABLE I								
Adsorption	Isotherms	of	Ethylene	AT	0	AND	40°	on
SILICA GEL ^a								

n	=	millimoles	adsorbed	per g. adsorbent;	Þ	=	pres-
			S11TO	mm ahs			

	··· ·· ·					
	0°C.	40	°C.			
P	n	P	н			
Ads	orption	$\mathbf{A} \mathbf{dsorption}$				
1.9	0.0120	20.0	0.0386			
7.6	.0597	100.9	.1588			
23.4	.1710	150.3	.2186			
67.9	.3839	214.1	.2894			
133.3	.6038	342.5	.4092			
226.4	.8338	444.0	. 4940			
350.4	1.068	620.3	. 621			
476.1	1.256	763.7	.717			
631.6	1.449	Deso	rntion			
745.5	1.576	2000	19401			
_	_	696.2	0.676			
Des	orption	524.6	. 5638			
549.5	1.360	284.6	.3656			
295.6	0.993	121.7	.1912			
100.1	. 516	73.7	. 1283			
62.4	.3695	37.5	. 0738			
27.3	.2061	10.6	.0277			
8.4	.0826					

^e Data for 25° will be found in ref. 2.

TABLE II

Adsorption Isotherms of Propane at 0, 40, and 100 ° on Silica Gel^4

n	-	millimoles	ads orbed	per	g. adsorbent;	P	=	pres-
			sure,	, mm	ı. abs.			

C	°℃.	40	°C.	100°C.			
Р	n	P n		P	n		
Adsorption		Adso	rption	Adsorption			
16.6	0.2137	10.1	0.0418	96.4	0.0531		
37.7	.3960	27.9	.0900	119.0	. 1471		
64.4	. 5678	46.7	.1407	406.5	.2087		
93.2	.7307	96.2	.2580	601.5	.2781		
129.3	.9010	136.9	.3352	753.7	.3360		
218.4	1.259	204.0	.4470				
298.8	1.520	282.0	.568				
429.4	1.881	373.0	.6871				
587.1	2.241	462.6	.7876				
762.6	2.582	554.9	.904				
Desc	rption	643.0	. 9908				
668.9	2.420	768.9	1.128				
501.1	2.072	Deso	rption				
264.6	1.443	540.8	0.8840				
109.4	0.9438	400 .0	.7068				
73.2	.6306	298.0	. 5790				
29.4	.3721	1 46 .6	.3276				
		38.0	.0916				

" Data for 25° will be found in ref. 1.

Results.—The results, using the apparatus already described,^{1,2} are as follows: isotherms for ethylene at 0, 25 and 40° are in Table I and Fig. 1, propane in Table II and Fig. 2, propylene in Table III and Fig. 3. Ethylene–propane mixture data at 0, 25 and 40° are in Table IV,

TABLE	III
-------	-----

Adsorption Isotherms of Propylene at 0 and 40° on Silica Gel^a

(Propylene contained 3.08% inerts)									
= millimoles	adsorbed per	g. adsorbent	t; $P = \text{pressure}_{i}$						
10°C 40°C									
P	с. n	P 10	с. <i>n</i>						
Adso	rption	Adso	rption						
51.1	1.052	52.9	0.4586						
95.2	1.468	94.0	0.630						
213.8	2.065	249.4	1.059						
428.4	2.640	503.2	1.499						
762.1	3.179	764.9	1.791						
Deso	rption	Deso	rption						
564.9	2.935	605.4	1.626						
354.9	2.548	405.9	1,366						
151.7	1.903	184.1	0.926						
		74.7	0.5911						
* D									

* Data for 25° will be found in ref. 1.

Figs. 4 and 5, ethylene-propylene data in Table V, Figs. 6 and 7.

Fig. 3.—Adsorption isotherms of propylene (97% purity) on silica gel at 0, 25 and 40°: $\triangle O \Box$ adsorption; $\nabla \blacksquare \bullet$ desorption.

Fig. 4.—Isothermal, isobaric adsorption of ethylenepropane mixtures on silica gel, atmospheric pressure and 0, 25 and 40°: $\Box \blacksquare 0°$ ethylene, propane on surface first, resp.; $\triangle \blacktriangle 25°$ ethylene, propane on surface first, resp.; $O \blacksquare 40°$ ethylene, propane on surface first, resp.

Fig. 5.—Total quantity adsorbed from ethylene-propane mixtures, silica gel, atmospheric pressure.

Discussion.—The ethylene and propane isotherms obey the Langmuir isotherm equation fairly satisfactorily, with propylene the agreement was unsatisfactory. The mixtures studied show slightly decreasing relative volatilities in the vapor-adsorbate equilibrium with increasing temperature despite the substantial decrease in the total moles adsorbed per gram as the tem-

Fig. 6.—Isothermal, isobaric adsorption of ethylenepropylene mixtures on silica gel: $\Box \blacksquare$, 0° ethylene, propylene on surface first, resp.; $\triangle \blacktriangle 25^\circ$ ethylene, propylene on surface first, resp.; $O \blacksquare 40^\circ$ ethylene, propylene on surface first, resp.

Fig. 7.—Total quantity adsorbed from ethylene-propylene mixtures, silica gel, atmospheric pressure.

perature is increased. This would seem to indicate that portions of the surface which are doing the adsorbing are relatively fairly homogeneous.

1163

Table IV Vapor-Adsorbate Equilibrium Data for Mixtures of Ethylene-Propane at 0, 25 and 40° over Silica Gel

			adsorb	eu per g. a	usur bent,	$\pi - total$	pressure i	mm, abs.				
0°C.				25°C.				40°C.				
Y	X	N	π	Y	X	N	π	Y	X	N	7	
0.0429	0.0270	2.572^{a}	762.4	0.081	0.047	1.466	768.1	0.159	0.103	1.013	769.5	
.0990	.0760	2.575^{a}	763.7	.237	.158	1.392	763.8	.494	. 340	0.900°.°	772.6	
.204	. 123	2.452^{a}	762.7	.381	.233	1.323	767.8	.492	.346	.900 ^d •*	771.2	
.322	.214	2.375^{a}	763.7	.401	.265	1.329	773.6	.648	.494	.838ª	775.4	
.401	.251	2.273^{a}	761.4	.488	.348	1.262	762.3	.775	.635	.785ª	775.7	
. 545	.361	2.116^{b}	766.7	.661	.491	1.171	773.2	.931	.884	.716ª	776	
.542	. 386	2.108^{5}	767.5	.762	.626	1.112	762.3					
.684	. 505	1.990°	766.5	.868	.769	1.078	773.6					
.790	.625	1.888*	766.6	.953	.919	0.990	764.4					
.825	.699	1.804*	759.1									
.917	.821	1.747	761.4									
.978	.955	1.620^{a}	766.6									

X = mole fraction of ethylene in adsorbate; Y = mole fraction of ethylene in gas phase; N = millimoles of mixture adsorbed per g. adsorbent; $\pi =$ total pressure mm. abs.

^a Sample B, premixed gas, 10 passes. ^b Sample A. ^c Propane on surface first, ethylene added, 20 passes at 0°, 10 at 40°. ^d Ethylene on surface first, propane added, 20 passes at 0°, 10 at 40°. ^e Sample C, premixed gases, 10 passes.

TABLE V

VAPOR-ADSORBATE EQUILIBRIUM DATA FOR MIXTURES OF ETHYLENE-PROPYLENE AT 0, 25 AND 40° OVER SILICA GEL X = mole fraction ethylene in adsorbate; Y = mole fraction ethylene in gas phase; N = millimoles of mixture adsorbed per g. adsorbent; π = total pressure, mm. abs.

0°C.				25°C.				40°C.				
Y	X	N	π	Y	X	N	π	Y	X	N	π	
0.364	0.0662ª	2.890	771.8	0.248	0.0369	2.025	768.1	0.321	0.0602ª	1.481	769.6	
.579	.145 ^b	2.611	771.0	.526	. 123	1.763	767.1	.563	. 109 ⁶	1.305	768.2	
.711	. 207 ^b	2.504^{b}	770.4	.628	.195	1.680	767.4	. 703	$.270^{a}$	1.143	766.9	
.682	.238ª	2.372°	759.5	.817	.397	1.405	773.3	.852	.471 ^b	0.942	765.1	
.814	.362ª	2.228	775.4	.908	. 597	1.208	772.3	.935	.705ª	0.824	765.7	
.903	.541 ^b	1.981	774.5	.968	.807	1.049	771.2					
.948	.745ª	1.807	769.2									
. 989	.885	1.662	769.1									

^a Ethylene on surface first, 10 passes. ^b Propylene on surface first, 10 passes.

It will be observed, for the mixture data, that for each binary system the higher molecular weight compound is the less volatile over the adsorbent, but that there is more competition for the silica gel surface between ethylene and propane than between the two olefin mixtures.

Summary

1. Adsorption-desorption isotherms at 0, 25 and 40° have been determined for ethylene, propane and propylene on silica gel.

2. Vapor-adsorbate equilibrium curves at one atmosphere have been obtained for the binary

systems ethylene-propane and ethylene-propylene at 0, 25 and 40° .

3. Ethylene is relatively more volatile than propane or propylene in the isobaric, isothermal binary systems.

4. Ethylene exhibits a much greater relative volatility in the propylene system than in the propane system demonstrating the influence of the double bond.

5. The adsorption phenomena reported herein are reversible.

CAMBRIDGE 39, MASS. RECEIVED MARCH 10, 1949